

RPC BROKER

GETTING STARTED WITH THE
BROKER DEVELOPMENT KIT (BDK)

Version 1.1

Revised May 2002

Department of Veterans Affairs
VISTA System Design & Development (SD&D)

Information Infrastructure Service (IIS)

Revised: May 2002 RPC Broker Getting Started with the BDK iii
 Version 1.1

Document Revision History

The following table displays the revision history for this document. Revisions to the documentation are
based on patches and new versions released to the field.

Date Revision Description Author

05/08/02 3.0 Revised Version for Patch 26. Thom Blom, Oakland OIFO

05/01/02 2.0 Revised Version for Patch 13. Thom Blom, Oakland OIFO

09/97 1.0 Initial RPC Broker Version 1.1 software
release.

Thom Blom, San Francisco
OIFO

For a complete list of patches released with the RPC Broker V. 1.1 software, please refer to
"Appendix A—Patch Revision History."

Document Revision History

iv RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Revised: May 2002 RPC Broker Getting Started with the BDK v
 Version 1.1

Contents

Orientation ... ix

How to Use this Manual .. ix
Commonly Used Terms.. x
How to Obtain Technical Information Online.. x
Assumptions About the Reader ... xi
Reference Materials..xii

1. Introduction ...1-1

2. TRPCBroker Component for Delphi...2-1

TRPCBroker Component Properties and Methods ...2-1
TRPCBroker Key Properties ...2-2
TRPCBroker Key Methods ...2-3
How to Connect to an M Server ..2-4

3. Remote Procedure Calls (RPCs) ..3-1

What is a Remote Procedure Call? ..3-1
Create Your Own RPCs ..3-1
Writing M Entry Points for RPCs ...3-2
RPC Entry in the REMOTE PROCEDURE File ..3-5
What Makes a Good Remote Procedure Call? ..3-5
How to Execute an RPC from a Client Application..3-5
RPC Security: How to Register an RPC..3-6

4. Other RPC Broker APIs ...4-1

GetServerInfo Function ...4-1
VISTA Splash Screen Procedures ...4-2
XWB GET VARIABLE VALUE RPC...4-3
M Emulation Functions ...4-3
Encryption Functions ..4-4
$$BROKER^XWBLIB ...4-4
$$RTRNFMT^XWBLIB...4-4

Contents

vi RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

5. Debugging and Troubleshooting ..5-1

How to Debug Your Client Application..5-1
Troubleshooting Connections..5-2

6. RPC Broker Developer Utilities ...6-1

Programmer Settings ...6-1

7. RPC Broker and Delphi..7-1

Delphi 6.0 Packages ..7-1
Delphi V. 6 Standard Edition Not Recommended for BDK Development...................................7-1
XWB_Rxx.BPL File ...7-1

Delphi 5.0 Packages ..7-1
Delphi V. 5 Standard Edition Not Recommended for BDK Development...................................7-1
XWB_Rxx.BPL File ...7-2

Delphi 4.0 Packages ..7-2
XWB_Rxx.BPL File ...7-2

Delphi 3.0 Packages ..7-2
VistaBroker.DPL ..7-2
Distributing the Delphi VCL30.DPL..7-3

8. RPC Broker Dynamic Link Library (DLL)..8-1

DLL Interface ..8-1
Exported Functions ...8-1
Header Files Provided...8-1
Sample DLL Application..8-1
Return Values from RPCs...8-2
COTS Development and the DLL ..8-2

9. For More Information...9-1

RPC Broker Developer's Guide—BROKER.HLP ..9-1
Other RPC Broker Resources..9-2

Glossary ...Glossary-1

Appendix A—Patch Revision History ... Appendix A-1

Index ... Index-1-1

Revised: May 2002 RPC Broker Getting Started with the BDK vii
 Version 1.1

Figures

Table 1: Documentation symbol descriptions.. ix
Table 2: Commonly used RPC Broker terms.. x
Table 3: TRPCBroker component key properties..2-2
Table 4: RPC Broker return value types ..3-3
Table 5: Input parameter types...3-4
Table 6: REMOTE PROCEDURE file key field entries ...3-5
Figure 1: Server and port configuration selection dialog...4-1
Figure 2: VISTA Splash screen ...4-2
Figure 3: RPC Broker Programmer Preferences dialog...6-1
Table 7: Programmer preference settings ..6-1
Table 8: TRPCBroker component's Results property ..8-2
Figure 4: Delphi's Tool Properties dialog ..9-1
Table 9: Related documentation (and format) ...9-2
Table 10: RPC Broker V. 1.1 patch revision history (in reverse sequence order)Appendix-7

Figures

viii RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Revised: May 2002 RPC Broker Getting Started with the BDK ix
 Version 1.1

Orientation

How to Use this Manual

Throughout this manual, advice and instructions are offered regarding the use of the RPC Broker V. 1.1
Broker Development Kit (BDK) and the functionality it provides for Veterans Health Information
Systems and Technology Architecture (VISTA) and commercial off-the-shelf (COTS) software products.

There are no special legal requirements involved in the use of the RPC Broker's Interface.

This manual uses several methods to highlight different aspects of the material:

• Various symbols are used throughout the documentation to alert the reader to special information.
The following table gives a description of each of these symbols:

Symbol Description

Used to inform the reader of general information including references to
additional reading material

Used to caution the reader to take special notice of critical information

Table 1: Documentation symbol descriptions

• Descriptive text is presented in a proportional font (as represented by this font).

• "Snapshots" of computer online displays (i.e., roll-and-scroll screen captures/dialogs) and
computer source code are shown in a non-proportional font and enclosed within a box. Also
included are Graphical User Interface (GUI) Microsoft Windows images (i.e., dialogs or forms).

 User's responses to online prompts will be boldface type.

 The "<Enter>" found within these snapshots indicate that the user should press the Enter
or Return key on their keyboard.

 Author's comments are displayed in italics or as "callout" boxes.

Callout boxes refer to labels or descriptions usually enclosed within a box,
which point to specific areas of a displayed image.

• Object Pascal code uses a combination of upper- and lowercase characters. All Object Pascal
reserved words are in boldface type.

• All uppercase is reserved for the representation of M code, variable names, or the formal name of
options, field and file names, and security keys (e.g., the XUPROGMODE key).

Orientation

x RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Commonly Used Terms

The following is a list of terms and their descriptions that you may find helpful while reading the RPC
Broker documentation:

Term Description

Client A single term used interchangeably to refer to a user, the
workstation (i.e., PC), and the portion of the program that
runs on the workstation.

Component A software object that contains data and code. A
component may or may not be visible.

 For a more detailed description, see the "Borland
Delphi for Windows User Guide."

GUI The Graphical User Interface application that is
developed for the client workstation.

Host The term Host is used interchangeably with the term
Server.

Server The computer where the data and the RPC Broker
remote procedure calls (RPCs) reside.

Table 2: Commonly used RPC Broker terms

Please refer to the "Glossary" for additional terms and definitions.

How to Obtain Technical Information Online

Exported file, routine, and global documentation can be generated through the use of Kernel, MailMan,
and VA FileMan utilities.

Methods of obtaining specific technical information online will be indicated where applicable
under the appropriate topic.

Help at Prompts

VISTA software has online help and commonly used system default prompts. In roll-and-scroll mode users
are strongly encouraged to enter question marks at any response prompt. At the end of the help display,
you are immediately returned to the point from which you started. This is an easy way to learn about any
aspect of VISTA software.

Revised: May 2002 RPC Broker Getting Started with the BDK xi
 Version 1.1

To retrieve online documentation in the form of Help in VISTA roll-and-scroll software:

• Enter a single question mark ("?") at a field/prompt to obtain a brief description. If a field is a
pointer, entering one question mark ("?") displays the HELP PROMPT field contents and a list of
choices, if the list is short. If the list is long, the user will be asked if the entire list should be
displayed. A YES response will invoke the display. The display can be given a starting point by
prefacing the starting point with an up-arrow ("^") as a response. For example, ^M would start an
alphabetic listing at the letter M instead of the letter A while ^127 would start any listing at the
127th entry.

• Enter two question marks ("??") at a field/prompt for a more detailed description. Also, if a field
is a pointer, entering two question marks displays the HELP PROMPT field contents and the list
of choices.

• Enter three question marks ("???") at a field/prompt to invoke any additional Help text that may
be stored in Help Frames.

Obtaining Data Dictionary Listings

Technical information about files and the fields in files is stored in data dictionaries. You can use the List
File Attributes option on the Data Dictionary Utilities submenu in VA FileMan to print formatted data
dictionaries.

For details about obtaining data dictionaries and about the formats available, please refer to the
"List File Attributes" chapter in the "File Management" section of the "VA FileMan Advanced
User Manual."

Assumptions About the Reader

This manual is written with the assumption that the reader is familiar with the following:

• VISTA computing environment (e.g., Kernel Installation and Distribution System [KIDS])

• VA FileMan data structures and terminology

• Microsoft Windows

• Borland's Delphi development environment

• GUI standards and guidelines

• M programming language

• Object Pascal programming language

No attempt is made to explain how the overall VISTA programming system is integrated and maintained.
Such methods and procedures are documented elsewhere. We suggest you look at the various VA home
pages on the World Wide Web for a general orientation to VISTA. For example, go to the System Design
& Development (SD&D) Home Page at the following web address:

http://vista.med.va.gov/

http://vista.med.va.gov/

Orientation

xii RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

This manual does provide, however, an explanation of the RPC Broker, describing how it can be used in a
client/server environment.

Reference Materials

Readers who wish to learn more about the RPC Broker should consult the following:

• "RPC Broker Developer's Guide" (i.e., BROKER.HLP, online help designed for programmers,
distributed in the BDK)

• "RPC Broker Systems Manual

• "RPC Broker Technical Manual"

• "RPC Broker Installation Guide"

• "RPC Broker Release Notes"

• RPC Broker Home Page at the following web address:

http://vista.med.va.gov/broker/

This site provides announcements, additional information (e.g., Frequently Asked Questions
[FAQs], advisories), documentation links, archives of older documentation and software
downloads.

Broker documentation is made available online, on paper, and in Adobe Acrobat Portable Document
Format (.PDF). The .PDF documents must be read using the Adobe Acrobat Reader
(i.e., ACROREAD.EXE), which is freely distributed by Adobe Systems Incorporated at the following
web address:

http://www.adobe.com/

For more information on the use of the Adobe Acrobat Reader, please refer to the "Adobe
Acrobat Quick Guide" at the following web address:

http://vista.med.va.gov/iis/acrobat/index.html

DISCLAIMER: The appearance of external hyperlink references in this manual does not
constitute endorsement by the Department of Veterans Health Administration (VHA) of
this Web site or the information, products, or services contained therein. The VHA does
not exercise any editorial control over the information you may find at these locations.
Such links are provided and are consistent with the stated purpose of this VHA Intranet
Service.

http://vista.med.va.gov/broker/
http://www.adobe.com/
http://vista.med.va.gov/iis/acrobat/index.html

Revised: May 2002 RPC Broker Getting Started with the BDK 1-1
 Version 1.1

1. Introduction

The Remote Procedure Call (RPC) Broker (also referred to as "Broker") is a client/server system within
VA's Veterans Health Information Systems and Technology Architecture (VISTA) environment. It
establishes a common and consistent foundation for client/server applications being written as part of
VISTA. It enables client applications to communicate and exchange data with M Servers.

This manual introduces developers to the RPC Broker and the Broker Development Kit (BDK). The
emphasis is on using the RPC Broker in conjunction with Borland's Delphi software. However, the RPC
Broker supports other development environments.

This manual provides an overview of development with the RPC Broker.

For more complete information on development with the RPC Broker components, please refer
to the "RPC Broker Developer's Guide" (i.e., BROKER.HLP, online help distributed with the
BDK).

This document is intended for the VISTA development community and Information Resource
Management (IRM) staff. A wider audience of technical personnel engaged in operating and maintaining
the Department of Veterans Affairs (VA) software may also find it useful as a reference.

About This Version of the BDK

This version of the BDK provides programmers with the capability to develop new VISTA client/server
software using the Broker Delphi component (i.e., TRPCBroker) in a 32-bit environment.

To develop VISTA applications in a 32-bit environment you must have Delphi V. 2.0 or greater. This
version of the RPC Broker component will not allow you to develop applications in Delphi V. 1.0.
However, the Broker routines on the M server will continue to support VISTA applications previously
developed in the 16-bit environment.

The default installation of the Broker creates a separate BDK directory (i.e., BDK32) that contains the
required Broker files for development.

Backward Compatibility Issues

Client applications compiled with this version of the RPC Broker (V. 1.1) will not work at a site that has
not upgraded its RPC Broker server software to V.1.1.

On the other hand, client applications compiled with RPC Broker V.1.0 will work with the V. 1.1 RPC
Broker server.

Introduction

1-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Revised: May 2002 RPC Broker Getting Started with the BDK 2-1
 Version 1.1

2. TRPCBroker Component for Delphi

The main tool to develop client applications for the RPC Broker environment is the TRPCBroker
component for Delphi. The TRPCBroker component adds the following abilities to your Delphi
application:

• Connecting to an M server

 Authenticate the user

 Set up the environment on the server

 Bring back the introductory text

• Invoking Remote Procedure Calls (RPCs) on the M Server

 Send data to the M Server

 Perform actions on the server

 Return data from the server to the client

To add the TRPCBroker component to your Delphi application, simply drop it from the Kernel tab of
Delphi's component palette to a form in your application.

TRPCBroker Component Properties and Methods

As a Delphi component, the TRPCBroker component is controlled and accessed through its properties
and methods. By setting its properties and executing its methods, you can connect to an M server from
your application and execute RPCs on the M server to exchange data and perform actions on the M
server.

For most applications, you will only need to use a single TRPCBroker component to manage
communications with the M server.

TRPCBroker Component for Delphi

2-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

TRPCBroker Key Properties

The following table lists the most important properties of the TRPCBroker component.

For a complete list of all of Broker properties, please refer to the "RPC Broker Developer's
Guide" (i.e., BROKER.HLP, online help distributed with the BDK).

Property Description

ClearParameters If True, the Param property is cleared after every invocation of the Call,
strCall, or the lstCall methods.

ClearResults If True, the Results property is cleared before every invocation of the Call
method, thus assuring that only the results of the last call are returned.

Connected Setting this property to True connects your application to the server.

ListenerPort Sets server port to connect to a Broker Listener process (mainly for
development purposes; for end-users, determine on the fly with
GetServerInfo method.)

Param Run-time array in which you set any parameters to pass as input
parameters when calling an RPC on the server.

RemoteProcedure Name of a RemoteProcedure entry that the Call, lstCall, or strCall method
should invoke.

Results This is where any results are stored after a Call, lstCall, or strCall method
completes.

Server Name of the server to connect to (mainly for development purposes; for
end-users, determine on the fly with GetServerInfo method.)

Table 3: TRPCBroker component key properties

 TRPCBroker Component for Delphi

Revised: May 2002 RPC Broker Getting Started with the BDK 2-3
 Version 1.1

TRPCBroker Key Methods

This section lists the most important methods of the TRPCBroker component.

For a complete list of all of Broker methods, please refer to the "RPC Broker Developer's
Guide" (i.e., BROKER.HLP, online help distributed with the BDK).

procedure Call;

This method executes an RPC on the server and returns the results in the TRPCBroker component's
Results property.

Call expects the name of the remote procedure and its parameters to be set up in the RemoteProcedure
and Param properties respectively. If ClearResults is True, then the Results property is cleared before
the call. If ClearParameters is True, then the Param property is cleared after the call finishes.

function strCall: string;

This method is a variation of the Call method. Only use it when the return type is a single string.
Instead of returning results in the TRPCBroker component's Results[0] property node, results are
returned as the value of the function call. Unlike the Call method, the Results property is not affected;
no matter the setting of ClearResults, the value is left unchanged.

procedure lstCall(OutputBuffer: TStrings);

This method is a variation of the Call method. Instead of returning results in the TRPCBroker
component's Results property, it instead returns results in the TStrings object you specify. Unlike the
Call method, the Results property is not affected; no matter the setting of ClearResults, the value is
left unchanged.

function CreateContext(strContext: string): boolean;

This method creates a context for your application. Pass an option name in the strContext parameter.
If the function returns True, a context was created, and your application can use all RPCs entered in
the option's RPC multiple.

Examples

For examples of how to use these methods to invoke RPCs, see the "How to Execute an RPC from a
Client Application" topic in the "Remote Procedure Calls" chapter of this manual.

TRPCBroker Component for Delphi

2-4 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

How to Connect to an M Server

To establish a connection from your application to a Broker server:

1. From the Kernel component palette tab, add a TRPCBroker component to your form.

2. Add code to your application to connect to the server; one likely location is your form's OnCreate

event handler. The code should:

a. Use the GetServerInfo function to retrieve the run-time server and port to connect to. This
function is not a method of the TRPCBroker component; it is described in the Other RPC
Broker APIs chapter.

b. Inside of an exception handler try...except block, set RPCBroker1's Connected property to
True. This causes an attempt to connect to the Broker server.

c. Check if an EBrokerError exception is raised. If this happens, connection failed. You should
inform the user of this and then terminate the application.

The code, placed in an OnCreate event handler, should look like:

procedure TForm1.FormCreate(Sender: TObject);
var ServerStr: String;
 PortStr: String;
begin
 // get the correct port and server from registry
 if GetServerInfo(ServerStr,PortStr)<>mrCancel then
 begin
 RPCBroker1.Server:=ServerStr;
 RPCBroker1.ListenerPort:=StrToInt(PortStr);
 end
 else Application.Terminate;

 // establish a connection to the Broker
 try
 RPCBroker1.Connected:=True;
 except
 On EBrokerError do
 begin
 ShowMessage('Connection to server could not be established!');
 Application.Terminate;
 end;
 end;
end;

3. A connection with the Broker M Server is now established. You can use the CreateContext method of

the TRPCBroker component to authorize use of RPCs for your user, and then use the Call, lstCall,
and strCall methods of the TRPCBroker component to execute RPCs on the M server. See the next
chapter, Remote Procedure Calls, for information on creating and executing RPCs.

Revised: May 2002 RPC Broker Getting Started with the BDK 3-1
 Version 1.1

3. Remote Procedure Calls (RPCs)

What is a Remote Procedure Call?

A remote procedure call (RPC) is a defined call to M code that runs on an M server. A client application,
through the RPC Broker, can make a call to the M server and execute an RPC on the M server. This is the
mechanism through which a client application can:

• Send data to an M server

• Execute code on an M server

• Retrieve data from an M server

An RPC can take optional parameters to do some task and then return either a single value or an array to
the client application. RPCs are stored in the REMOTE PROCEDURE file (#8994).

Relationship Between an M Entry Point and an RPC

An RPC can be thought of as a wrapper placed around an M entry point for use with client applications.
Each RPC invokes a single M entry point. The RPC passes data in specific ways to its corresponding M
entry point and expects any return values from the M entry point to be returned in a pre-determined
format. This allows client applications to connect to the RPC Broker, invoke an RPC, and through the
RPC, invoke an M entry point on a server.

Create Your Own RPCs

You can create your own custom RPCs to perform actions on the M server and to retrieve data from the
M server. Then you can call these RPCs from your client application. Creating an RPC requires you to
perform the following two steps:

1. Write and test the M entry point that is called by the RPC.

2. Add the RPC entry that invokes your M entry point, in the REMOTE PROCEDURE file (#8994).

Delphi
Component

M Entry
Point

Remote Procedure Calls (RPCs)

3-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Writing M Entry Points for RPCs

First Input Parameter (Required)

The RPC Broker always passes a variable by reference in the first input parameter to your M routine. It
expects results (one of five types described below) to be returned in this parameter. You must always set
some return value into that first parameter before your routine returns.

Return Value Types

There are five RETURN VALUE TYPES for RPCs as shown in the table below. Choose a return value
type that is appropriate to the type of data your RPC needs to return to your client. Your M entry point
should set the return value (in the routine's first input parameter) accordingly.

RPC Return
Value Type

How M Entry Point Should
Set the Return Parameter

RPC Word
Wrap On
Setting

Value(s) returned in
Client Results

Single Value Set the return parameter to a single value.
For example:
TAG(RESULT) ;
 S RESULT="DOE, JOHN"
 Q

No effect Value of parameter, in
Results[0].

Array Set an array of strings into the return
parameter, each subscripted one level
descendant.

For example:
TAG(RESULT) ;
 S RESULT(1)="ONE"
 S RESULT(2)="TWO"
 Q

For large arrays consider using the
GLOBAL ARRAY return value type to avoid
memory allocation errors.

No effect Array values, each in
a Results item.

True Array values, each in
a Results item.

Word
Processing

Set the return parameter the same as you
set it for the ARRAY type. The only
difference is that the WORD WRAP ON
setting affects the WORD PROCESSING
return value type.

False Array values,
concatenated into
Results[0].

 Remote Procedure Calls (RPCs)

Revised: May 2002 RPC Broker Getting Started with the BDK 3-3
 Version 1.1

RPC Return
Value Type

How M Entry Point Should
Set the Return Parameter

RPC Word
Wrap On
Setting

Value(s) returned in
Client Results

True Array values, each in
a Results item.

Global Array Set the return parameter to a closed global
reference in ^TMP. The global's data nodes
will be traversed using $QUERY, and all
data values on global nodes descendant
from the global reference are returned.

This type is especially useful for returning
data from VA FileMan word processing
fields, where each line is on a 0-subscripted
node.

 The global reference you pass is
killed by the Broker at the end of RPC
Execution as part of RPC cleanup. Do
not pass a global reference that is not in
^TMP or that should not be killed.
This type is useful for returning large
amounts of data to the client, where using
the ARRAY type can exceed the symbol
table limit and crash your RPC.

For example, to return sign-on introductory
text you could do:
TAG(RESULT);
 M ^TMP("A6A",$J)=
^XTV(8989.3,1,"INTRO")
 ;this node not needed
 K ^TMP("A6A",$J,0)
 S RESULT=$NA(^TMP("A6A",$J))
 Q

False Array values,
concatenated into
Results[0].

Global
Instance

Set the return parameter to a closed global
reference.

For example, to return the 0th node from
the NEW PERSON file for the current user:
TAG(RESULT) ;
 S RESULT=$NA(^VA(200,DUZ,0))
 Q

No effect Value of global node,
in Results[0].

Table 4: RPC Broker return value types

Remote Procedure Calls (RPCs)

3-4 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Input Parameter Types (Optional)

The M entry point for an RPC can optionally have input parameters (i.e., beyond the first parameter,
which is always used to return an output value). The client passes data to your M entry point through
these parameters.

The client can send data to an RPC (and therefore your entry point) in one of the following three format
types:

Param PType Param Value

Literal Delphi string value, passed as a string literal to the M server.

Reference Delphi string value, treated on the M Server as an M variable name and resolved
from the symbol table at the time the RPC executes.

List A single-dimensional array of strings in the Mult subproperty of the Param property,
passed to the M Server where it is placed in an array. String subscripting can be
used.

Table 5: Input parameter types

The type of the input parameters passed in the Param property of the TRPCBroker component determines
the format of the data you must be prepared to receive in your M entry point.

RPC M Entry Point Examples

The following two examples illustrate sample M code that could be used in simple RPCs.

1. This example takes two numbers and returns their sum:

SUM(RESULT,A,B) ;add two numbers
 S RESULT=A+B
 Q

2. This example receives an array of numbers and returns them as a sorted array to the client:

SORT(RESULT,UNSORTED) ;sort numbers
 N I
 S I=""
 F S I=$O(UNSORTED(I)) Q:I="" S RESULT(UNSORTED(I))=UNSORTED(I)
 Q

 Remote Procedure Calls (RPCs)

Revised: May 2002 RPC Broker Getting Started with the BDK 3-5
 Version 1.1

RPC Entry in the REMOTE PROCEDURE File

After the M code is complete, you need to create the RPC itself in the REMOTE PROCEDURE file
(#8994). The following fields in the REMOTE PROCEDURE file (#8994) are key to the correct
operation of an RPC:

Field Name Required? Description

NAME (#.01) Yes The name that identifies the RPC (this entry
should be namespaced in the package
namespace).

TAG (#.02) Yes The tag at which the remote procedure call
begins.

ROUTINE (#.03) Yes The name of the routine that should be
invoked to start the RPC.

WORD WRAP ON (#.08) No Affects GLOBAL ARRAY and WORD
PROCESSING return value types only. If set
to False, data is returned in a single
concatenated string in Results[0]. If set to
True, each array node on the M side is
returned as a distinct array item in Results.

RETURN VALUE TYPE (#.04) Yes This indicates to the Broker how to format the
return values. For example, if RETURN
VALUE TYPE is WORD PROCESSING, then
each entry in the returning list will have a
<CR><LF> (<carriage return><line feed>)
appended.

Table 6: REMOTE PROCEDURE file key field entries

What Makes a Good Remote Procedure Call?

• Silent calls (no I/O to terminal or screen, no user intervention required)

• Minimal resources required (passes data in brief, controlled increments)

• Discrete calls (requiring as little information as possible from the process environment)

• Generic as possible (different parts of the same package as well as other packages could use the
same RPC)

How to Execute an RPC from a Client Application

1. If your RPC has any input parameters beyond the mandatory first parameter, set a Param node in
the TRPCBroker's Param property for each. For each input parameter, set the following sub
properties:

• Value

• PType (Literal, List, or Reference).

Remote Procedure Calls (RPCs)

3-6 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

If the parameter's PType is List, however, set a list of values in the Mult subproperty rather than
setting the Value subproperty.

Here is an example of some settings of the Param property:

RPCBroker1.Param[0].Value := '10/31/97';
RPCBroker1.Param[0].PType := literal;
RPCBroker1.Param[1].Mult['"NAME"'] := 'SMITH, JOHN';
RPCBroker1.Param[1].Mult['"SSN"'] := '123-45-6789';
RPCBroker1.Param[1].PType := list;

2. Set the TRPCBroker's RemoteProcedure property to the name of the RPC to execute.

RPCBroker1.RemoteProcedure:='A6A LIST';

3. Invoke the Call method of the TRPCBroker component to execute the RPC. All calls to the Call

method should be done within an exception handler try...except statement, so that all
communication errors (which trigger the EBrokerError exception) can be trapped and handled.
For example:

try
 RPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('A problem was encountered communicating with the
server.');
end;

4. Any results returned by your RPC are returned in the TRPCBroker component's Results property.

Depending on how you set up your RPC, results are returned either in a single node of the Results
property (Result[0]) or in multiple nodes of the Results property.

You can also use the lstCall and strCall methods to execute an RPC. The main
difference between these methods and the Call method is that lstCall and strCall do not
use the Results property, instead returning results into a location you specify.

RPC Security: How to Register an RPC

Security for RPCs is handled through the RPC registration process. Each client application must create a
context for itself, which checks if the application user has access to a "B"-type option in the Kernel menu
system. Only RPCs assigned to that option can be run by the client application.

To enable your application to create a context for itself:

1. Create a "B"-type option in the OPTION file (#19) for your application.

The OPTION TYPE "B" represents a Broker client/server type option.

 Remote Procedure Calls (RPCs)

Revised: May 2002 RPC Broker Getting Started with the BDK 3-7
 Version 1.1

2. In the RPC multiple for this option type, add an entry for each RPC that your application calls.

You can also specify a security key that can lock each RPC (this is a pointer to the SECURITY
KEY file) and M code in the RULES subfield that can also determine whether to enable access to
each RPC.

3. When you export your package using KIDS, export both your RPCs and your package option.

4. Your application must create a context for itself on the server, which checks access to RPCs. In

the initial code of your client application, make a call to the CreateContext method of your
TRPCBroker component. Pass your application's "B"-type option's name as a parameter. For
example:

RPCBroker1.CreateContext(option_name)

If the CreateContext method returns True, only those RPCs designated in the RPC multiple of
your application option will be permitted to run.

If the CreateContext method returns False, you should terminate your application (if you don't
your application will run, but you will get errors every time you try to access an RPC).

5. End-users of your application must have the "B"-type option assigned to them on one of their

menus, in order for CreateContext to return True.

Bypassing RPC Security for Development

Having the XUPROGMODE security key allows you to bypass the Broker security checks. You can run
any RPC without regard to application context (without having to use the CreateContext method). This is
a convenience for application development. When you complete development, make sure you test your
application from an account without the XUPROGMODE key, to ensure that all RPCs needed are
properly registered.

BrokerExample Online Code Example

The BrokerExample sample application provided with the BDK demonstrates the basic features of
developing RPC Broker-based applications, including:

• Connecting to an M server

• Creating an application context

• Using the GetServerInfo function

• Displaying the VISTA splash screen

• Setting the RPCBroker.Param property for each Param PType (literal, reference, list)

• Calling RPCs with the Call method

• Calling RPCs with the lstCall and strCall methods

Remote Procedure Calls (RPCs)

3-8 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

The client source code files for the BrokerExample application are located in the
SAMPLES\BROKEREX subdirectory of the main BDK32 directory.

Revised: May 2002 RPC Broker Getting Started with the BDK 4-1
 Version 1.1

4. Other RPC Broker APIs

GetServerInfo Function

The GetServerInfo function retrieves the end-user workstation's server and port. Use this function to set
the TRPCBroker component's Server and ListenerPort properties to reflect the end-user workstation's
settings before connecting to the server.

If there is more than one server/port to choose from, GetServerInfo displays dialog that allows users to
select a service to connect to, as shown below:

Figure 1: Server and port configuration selection dialog

If exactly one server and port entry is defined in the Microsoft Windows Registry, GetServerInfo does not
display this dialog. The values in the single Microsoft Windows Registry entry are returned, with no user
interaction required.

If more than one server and port entry exists in the Microsoft Windows Registry, the dialog is displayed,
and the user chooses to which server they want to connect.

If no values for server and port are defined in the Microsoft Windows Registry, GetServerInfo does not
display this dialog, and automatic default values are returned (i.e., BROKERSERVER and 9200).

Syntax of GetServerInfo function:

function GetServerInfo(var Server, Port: string): integer;

The unit is RpcConf1.

Other RPC Broker APIs

4-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

VISTA Splash Screen Procedures

Two procedures in SplVista.PAS unit are provided to display a VISTA splash screen when an application
loads:

procedure SplashOpen;

procedure SplashClose(TimeOut: longint);

It is recommended that the splash screen be opened and closed in the section of Pascal code in an
application's project file (i.e., .DPR).

To use the splash screen in an application:

1. Open your application's project (.DPR) file (in Delphi, choose View | Project Source).

2. Include the SplVista in the uses clause of the project source.

3. Call SplashOpen immediately after the first form of your application is created and call

SplashClose just prior to invoking the Application.Run method.

4. Use the TimeOut parameter to ensure a minimum display time.

Figure 2: VISTA Splash screen

 Other RPC Broker APIs

Revised: May 2002 RPC Broker Getting Started with the BDK 4-3
 Version 1.1

uses
 Forms, Unit1 in 'Unit1.pas', SplVista;

{$R *.RES}

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 SplashOpen;
 SplashClose(2000);
 Application.Run;
end.

XWB GET VARIABLE VALUE RPC

You can call the XWB GET VARIABLE VALUE RPC (distributed with the RPC Broker) to retrieve the
value of any M variable in the server environment. Pass the variable name in Param[0].Value and the type
(reference) in Param[0].PType. Also, the current context of your user must give them permission to
execute the XWB GET VARIABLE VALUE RPC (it must be included in the RPC multiple of the "B"-
type option registered with the CreateContext function).

For example:

RPCBroker1.RemoteProcedure := 'XWB GET VARIABLE VALUE';
RPCBroker1.Param[0].Value :='DUZ';
RPCBroker1.Param[0].PType := reference;
try
 RPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage('Connection to server could not be established!');
end;
ShowMessage('DUZ is '+RPCBroker1.Results[0]);

M Emulation Functions

Piece Function

The Piece function is a scaled down Pascal version of M's $PIECE function. It is declared in
MFUNSTR.PAS.

function Piece(x: string; del: string; piece: integer) : string;

Translate Function

The Translate function is a scaled down Pascal version of M's $TRANSLATE function. It is declared in
MFUNSTR.PAS.

function Translate(passedString, identifier, associator: string): string;

Other RPC Broker APIs

4-4 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Encryption Functions

Kernel and the RPC Broker provide some rudimentary encryption and decryption functions. Data can be
encrypted on the client end and decrypted on the server, and vice-versa.

In Delphi

Include HASH in the "uses" clause of the unit in which you'll be encrypting or decrypting.

Function prototypes are as follows:

function Decrypt(EncryptedText: string): string;

function Encrypt(NormalText: string): string;

On the M Server

To encrypt:

>S CIPHER=$$ENCRYP^XUSRB1("Hello world!") W CIPHER

/U'llTG~TVl&f-

To decrypt:

>S PLAIN=$$DECRYP^XUSRB1(CIPHER) W PLAIN

Hello world!

$$BROKER^XWBLIB

Use this function in the M code called by an RPC to determine if the Broker is executing the current
process. It returns 1 if this is true, 0 if false.

$$RTRNFMT^XWBLIB

Use this function in the M code called by an RPC to change the return value type that the RPC will return
on the fly. This allows you to change the return value type to any valid return value type (SINGLE
VALUE, ARRAY, WORD PROCESSING, GLOBAL ARRAY, or GLOBAL INSTANCE). It also lets
you set WORD WRAP ON to True or False, on the fly, for the RPC.

For more information about $$RTRNFMT^XWBLIB, please refer to the "RPC Broker
Developer's Guide" (i.e., BROKER.HLP, online help distributed with the BDK).

Revised: May 2002 RPC Broker Getting Started with the BDK 5-1
 Version 1.1

5. Debugging and Troubleshooting

How to Debug Your Client Application

Beside the normal debugging facilities provided by Delphi, you can also invoke a debug mode so that you
can step through your code on the client side and your RPC code on the M server side simultaneously.

To do this:

1. On the client side, set the DebugMode property on the TRPCBroker component to True. When
the TRPCBroker component connects with this property set to True, you will get a dialog
indicating your workstation IP address and the port number.

2. At this point, switch over to the M server and set any break points in the routines being called in

order to help isolate the problem. Then issue the M debug command (e.g., ZDEBUG in DSM).

3. Start the following M server process:

>D EN^XWBTCP

You will be prompted for the workstation IP address and the port number. After entering the
information, switch over to the client application and click on the OK button.

4. You can now step through the code on your client and simultaneously step through the code on

the server side for any RPCs that your client calls.

RPC Error Trapping

M errors on the server that occur during RPC execution are trapped by the use of M and Kernel error
handling. In addition, the M error message is sent back to the Delphi client. Delphi will raise an exception
EBrokerError and a popup box displaying the error. At this point RPC execution terminates and the
channel is closed.

Debugging and Troubleshooting

5-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Troubleshooting Connections

Identifying the Listener Process on the Server

On DSM systems, where the Broker Listener is running, the Listener process name is RPCB_Port:NNNN,
where NNNN is the port number being listened to. This should help quickly locate Listener processes
when troubleshooting any connection problems.

Identifying the Handler Process on the Server

On DSM systems the name of a Handler process is ipXXX.XXX:NNNN, where XXX.XXX are the last
two octets of the client IP address and NNNN is the port number.

Testing Your RPC Broker Connection

To test the RPC Broker connection from your workstation to the M Server, use the RPC Broker
Diagnostic Program (RPCTEST.EXE).

For a complete description of the RPC Broker Diagnostic program, please refer to the
Troubleshooting chapter of the RPC Broker Systems Manual.

Revised: May 2002 RPC Broker Getting Started with the BDK 6-1
 Version 1.1

6. RPC Broker Developer Utilities

Programmer Settings

You can use BrokerProgPref.EXE to define certain default property values for the TRPCBroker
component. When you place TRPCBroker component(s) on your form(s) in Delphi, the settings you
define are used as the default property values.

Figure 3: RPC Broker Programmer Preferences dialog

You may want to make an entry for BrokerProgPref.EXE in Delphi's Tools Menu, to make it easily
accessible from within Delphi.

Setting Description

ClearParameters If checked, sets the ClearParameters property of a TRPCBroker
component to True when you add one to a form.

ClearResults If checked, sets the ClearResults property to of a TRPCBroker component
to True when you add one to a form.

ListenerPort Sets the ListenerPort property of a TRPCBroker component to the
specified value when you add one to a form.

Server Sets the Server property of a TRPCBroker component to the specified
value when you add one to a form.

Connect in Delphi IDE Enables or disables the connection to the M server from within the
Borland Integrated Development Environment (IDE). Disabling this is
useful when you are developing in an environment without a connection to
an M server. For example, when editing certain server properties, an
attempt is made to connect to the Server (if enabled).

Table 7: Programmer preference settings

RPC Broker Developer Utilities

6-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Revised: May 2002 RPC Broker Getting Started with the BDK 7-1
 Version 1.1

7. RPC Broker and Delphi

The following topics highlight changes made to or comments about the Broker to accommodate a
particular version of Delphi. They are listed in reverse Delphi version order.

Delphi 6.0 Packages

Delphi V. 6 Standard Edition Not Recommended for BDK Development

Delphi V. 6 comes in three flavors: Standard, Professional, and Enterprise. It is recommended that either
the Professional or Enterprise version of Delphi 6 be used to develop applications using the RPC Broker.

For more information on the different editions of Delphi, please refer to the "Delphi V. 5
Standard Edition Not Recommended for BDK Development" topic below.

XWB_Rxx.BPL File

The installation of Patch XWB*1.1*13 removed the run-time bpl for the Broker package, if it is present in
the System32 directory. This run-time package is found in the Delphi6\Projects directory. While on client
workstations, the proper location for the run-time bpl is in the System32 directory (so that it is in the
system path), however, on developer workstations, this frequently leads to problems when packages are
recompiled and the newly generated bpl file is not moved into this directory. To simplify matters on the
developer workstation, it is best that the file not be put into the System32 directory.

Delphi 5.0 Packages

Delphi V. 5 Standard Edition Not Recommended for BDK Development

Delphi V. 5 comes in three flavors: Standard, Professional, and Enterprise. This version of the BDK
requires the Professional or Enterprise Edition. Standard edition is targeted mainly at students, and as
such leaves out many features. We do not recommend using the Standard edition of Delphi V. 5 for RPC
Broker development at this time:

1. Delphi V. 5 Standard Edition does not ship with the OpenHelp help system, whose purpose is to
allow easy integration of 3rd party component help with Delphi's own internal component help.

2. The RPC Broker component has a dependency on a VCL source code unit, "dsgnintf.pas". Delphi
V. 5 Standard Edition does not ship the "dsgnintf" file, in either .PAS or .DCU form. VCL Source
code units are available in Delphi 5 Professional and Enterprise Editions. When installing Delphi
5 Professional or Enterprise Edition, make sure you leave the VCL Source installation option
selected.

RPC Broker and Delphi

7-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

XWB_Rxx.BPL File

The installation of Patch XWB*1.1*13 removed the run-time bpl for the Broker package, if it is present in
the System32 directory. This run-time package is found in the Delphi5\Projects\Bpl directory. While on
client workstations, the proper location for the run-time bpl is in the System32 directory (so that it is in
the system path), however, on developer workstations, this frequently leads to problems when packages
are recompiled and the newly generated bpl file is not moved into this directory. To simplify matters on
the developer workstation, it is best that the file not be put into the System32 directory.

Delphi 4.0 Packages

Patch XWB*1.1*14 split the Broker package into separate run- and design-time packages. If a package is
defined with the VistaBroker.DPK as a Required package, you must delete that required package and add
XWB_Dxx.DPK (where xx=30 for Delphi 3.0, =40 for Delphi 4.0, or =50 for Delphi 5.0) as a required
package.

XWB_Rxx.BPL File

The installation of Patch XWB*1.1*13 removed the run-time bpl for the Broker package, if it is present in
the System32 directory. This run-time package is found in the Delphi4\Bin directory. While on client
workstations, the proper location for the run-time bpl is in the System32 directory (so that it is in the
system path), however, on developer workstations, this frequently leads to problems when packages are
recompiled and the newly generated bpl file is not moved into this directory. To simplify matters on the
developer workstation, it is best that the file not be put into the System32 directory.

Delphi 3.0 Packages

Delphi V. 3.0 enabled applications to be distributed in specially compiled dynamic-link libraries called
Delphi Package Libraries (DPLs). DPLs enable code sharing, reduction of executable file size, and
conservation of system resources. The use of DPLs is restricted to development in Delphi 3 or higher.

VistaBroker.DPL

You can compile the TRPCBroker component code into your application, or you can choose instead to
link your application to the VistaBroker.DPL dynamic link library.

For more information on how to use DPLs, see the "Borland Delphi 3 User's Guide."

The VistaBroker.DPL file is installed on end-user workstations by the RPC Broker V. 1.1 end-user client
workstation installation program, along with the other RPC Broker V. 1.1. client files. It is installed in an
appropriate directory, depending on the operating system (e.g., \WINDOWS\SYSTEM) such that the
DPL is accessible when an application calls it. Therefore, you do not need to distribute VistaBroker.DPL
with your application.

 RPC Broker and Delphi

Revised: May 2002 RPC Broker Getting Started with the BDK 7-3
 Version 1.1

Distributing the Delphi VCL30.DPL

If you choose to access functionality of the TRPCBroker component through the VistaBroker.DPL
dynamic link library, an additional requirement is that the VCL30.DPL library (provided with Delphi V.
3.0) be installed on the end-user workstation.

The RPC Broker does not distribute VCL30.DPL to end-user workstations (it only distributes
VistaBroker.DPL). You must ensure that VCL30.DPL is also installed on end-user workstations, perhaps
through the installation instructions you provide to system managers.

RPC Broker and Delphi

7-4 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Revised: May 2002 RPC Broker Getting Started with the BDK 8-1
 Version 1.1

8. RPC Broker Dynamic Link Library (DLL)

DLL Interface

The RPC Broker provides a Dynamic Link Library (DLL) interface, which acts like a "shell" around the
Delphi TRPCBroker component. The DLL is contained in the file BAPI32.DLL.

The DLL interface enables client applications, written in any language that supports access to Microsoft
Windows DLL functions, to take advantage of all features of the TRPCBroker component. This allows
programming environments other than Borland Delphi to make use of the TRPCBroker component. All of
the communication to the server is handled by the TRPCBroker component, accessed via the DLL
interface.

Exported Functions

The complete list of functions exported in the DLL is provided in the "RPC Broker Developer's Guide"
(i.e. BROKER.HLP, online help distributed with the BDK). Functions are provided in the DLL for:

• Creating and destroying TRPCBroker components.

• Setting and retrieving TRPCBroker component properties.

• Executing TRPCBroker component methods.

Header Files Provided

The following header files provide correct declarations for DLL functions:

C BAPI32.H

C++ BAPI32.HPP

Visual Basic BAPI32.BAS

Sample DLL Application

The Visual Basic (VB) EGCHO sample application distributed with the Broker Development Kit (see the
../BDK32/Samples/Vb5Egcho directory), demonstrates use of the TRPCBroker DLL from Microsoft
Visual Basic.

RPC Broker Dynamic Link Library (DLL)

8-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Return Values from RPCs

Results from an RPC executed on an M server are returned as a text stream. This text stream may or may
not have embedded <CR><LF> character combinations.

When you call an RPC using the TRPCBroker component for Delphi, the text stream returned from an
RPC is automatically parsed and returned in the TRPCBroker component's Results property as follows:

Results stream contains
<CR><LF> combinations

Location/format of results
(assumes RPC's Word Wrap On field is True if RPC is GLOBAL ARRAY
or WORD PROCESSING type)

Yes Results nodes, split based on <CR><LF> delimiter

No Results[0]

Table 8: TRPCBroker component's Results property

When you call an RPC using the DLL interface, the return value is the unprocessed text stream, which
may or may not contain <CR><LF> combinations. It is up to you to parse out what would have been
individual Results nodes in Delphi, based on the presence of any <CR><LF> character combinations in
the text stream.

COTS Development and the DLL

The Broker DLL serves as the gateway to the REMOTE PROCEDURE file (#8994) for non-Delphi
client/server applications. In order to use any RPCs not written specifically by the client application (e.g.,
CONSULTS FOR A PATIENT, USER SIGN-ON RPCs, or the more generic FileMan RPCs), you must
call the RPC Broker DLL with input parameters defined and results accepted in the formats required by
the RPC being called.

Therefore, to use the Broker DLL interface you must determine the following information for each RPC
you plan to use:

• How does the RPC expect input parameters, if any, to be passed to it?

• Will you be able to create any input arrays expected by the RPC in the same format expected by
the RPC?

• What will the results data stream returned by the RPC look like?

Revised: May 2002 RPC Broker Getting Started with the BDK 9-1
 Version 1.1

9. For More Information

RPC Broker Developer's Guide—BROKER.HLP

This manual provides an overview of development with the RPC Broker.

For more complete information on development with the RPC Broker components, please refer
to the "RPC Broker Developer's Guide" (i.e., BROKER.HLP, online help distributed with the
BDK).

You may want to make an entry for BROKER.HLP in Delphi's Tools Menu, to make it easily accessible
from within Delphi. To do this, use Delphi's Tools | Configure Tools option. Create a new menu entry
similar to the following:

Figure 4: Delphi's Tool Properties dialog

BROKER.HLP as Context-sensitive Help Within Delphi

The BROKER.HLP file provides context-sensitive help within Delphi on the TRPCBroker component
and its associated properties and methods. This help is available when you have installed the RPC Broker
V 1.1 BDK. When installed, you can select the TRPCBroker component or one of its properties in the
Object Inspector, and press the F1 key to get help on that item.

For more information on installing the RPC Broker in Delphi, please consult the "RPC Broker
Installation Guide."

For More Information

9-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Other RPC Broker Resources

To learn more about the RPC Broker, consult these related resources:

Title Format

Developer's Guide Microsoft Windows Help (i.e., BROKER.HLP, online help
distributed with the BDK)

Release Notes Adobe Acrobat PDF

Installation Guide Adobe Acrobat PDF

Systems Manual Adobe Acrobat PDF

Technical Manual Adobe Acrobat PDF

Security Guide Adobe Acrobat PDF

Table 9: Related documentation (and format)

RPC Broker Web Site

Additional information about the RPC Broker, as well as all RPC Broker manuals, is available at the RPC
Broker web site:

http://vista.med.va.gov/broker/

http://vista.med.va.gov/broker/

Revised: May 2002 RPC Broker Getting Started with the BDK Glossary-1
 Version 1.1

Glossary

ACCESS CODE A code that, along with the Verify code, allows the computer to identify
you as a user authorized to gain access to the computer. Your code is
greater than 6 and less than 20 characters long; can be numeric, alphabetic,
or a combination of both; and is usually assigned by a site manager or
application coordinator. It is used by the Kernel's Sign-on/Security system
to identify the user (see Verify Code).

ALERTS Brief online notices that are issued to users as they complete a cycle
through the menu system. Alerts are designed to provide interactive
notification of pending computing activities, such as the need to reorder
supplies or review a patient’s clinical test results. Along with the alert
message is an indication that the View Alerts common option should be
chosen to take further action.

ANSI MUMPS The MUMPS programming language is a standard recognized by the
American National Standard Institute (ANSI). MUMPS stands for
Massachusetts Utility Multi-programming System and is abbreviated as
M.

APPLICATION
PACKAGE

Software and documentation that support the automation of a service, such
as Laboratory or Pharmacy within VA medical centers. The Kernel
application package is like an operating system relative to other VISTA
applications.

CALLABLE ENTRY
POINT

An authorized programmer call that may be used in any VISTA application
package. The DBA maintains the list of DBIC-approved entry points.

CARET A symbol expressed as up caret ("^"), left caret ("<"), or right caret (">").
In many M systems, a right caret is used as a system prompt and an up
caret as an exiting tool from an option. Also known as the up-arrow
symbol or shift–6 key.

CLIENT A single term used interchangeably to refer to the user, the workstation,
and the portion of the program that runs on the workstation. In an object-
oriented environment, a client is a member of a group that uses the
services of an unrelated group. If the client is on a local area network
(LAN), it can share resources with another computer (server).

COMPONENT An object-oriented term used to describe the building blocks of GUI
applications. A software object that contains data and code. A component
may or may not be visible. These components interact with other
components on a form to create the GUI user application interface.

COTS Commercial Off-the-Shelf. COTS refers to software packages that can be
purchased by the public and used in support of VISTA.

Glossary

Glossary-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

DATA DICTIONARY The Data Dictionary is a global containing a description of the kind of data
that is stored in the global corresponding to a particular file. VA FileMan
uses the data internally for interpreting and processing files.

A Data Dictionary (DD) contains the definitions of a file’s elements (fields
or data attributes), relationships to other files, and structure or design.
Users generally review the definitions of a file's elements or data
attributes; programmers review the definitions of a file's internal structure.

DBIA Database Integration Agreement, a formal understanding between two or
more application packages that describes how data is shared or how
packages interact. The DBA maintains a list of DBIAs between package
developers, allowing the use of internal entry points or other package-
specific features that are not available to the general programming public.

DEFAULT A response the computer considers the most probable answer to the
prompt being given. In the roll-and-scroll mode of VISTA, the default
value is identified by double forward slash marks (//) immediately
following it. In a GUI-based application the default may be a highlighted
button or text. This allows you the option of accepting the default answer
or entering your own answer. To accept the default you simply press the
enter (or return) key. To change the default answer, type in your response.

DIRECT MODE UTILITY A programmer call that is made when working in direct programmer
mode. A direct mode utility is entered at the M prompt (e.g., >D ^XUP).
Calls that are documented as direct mode utilities cannot be used in
application package code.

DLL Dynamic Link Library. A DLL allows executable routines to be stored
separately as files with a DLL extension. These routines are only loaded
when a program calls for them. DLLs provide several advantages:

1. DLLs help save on computer memory, since memory is only
consumed when a DLL is loaded. They also save disk space. With
static libraries, your application absorbs all the library code into
your application so the size of your application is greater. Other
applications using the same library will also carry this code around.
With the DLL, you don’t carry the code itself, you have a pointer to
the common library. All applications using it will then share one
image.

2. DLLs ease maintenance tasks. Because the DLL is a separate file,
any modifications made to the DLL will not affect the operation of
the calling program or any other DLL.

3. DLLs help avoid redundant routines. They provide generic functions
that can be utilized by a variety of programs.

 Glossary

Revised: May 2002 RPC Broker Getting Started with the BDK Glossary-3
 Version 1.1

ERROR TRAP A mechanism to capture system errors and record facts about the
computing context such as the local symbol table, last global reference,
and routine in use. Operating systems provide tools such as the %ER
utility. The Kernel provides a generic error trapping mechanism with use
of the ^%ZTER global and ^XTER* routines. Errors can be trapped and,
when possible, the user is returned to the menu system.

FORUM The central e-mail system within VISTA. Developers use FORUM to
communicate at a national level about programming and other issues.
FORUM is located at the Washington, DC CIO Field Office (162-2).

GUI Graphical User Interface. A type of display format that enables users to
choose commands, initiate programs, and other options by selecting
pictorial representations (icons) via a mouse or a keyboard.

ICON A picture or symbol that graphically represents an object or a concept.

IRM Information Resource Management. A service at VA medical centers
responsible for computer management and system security.

KERNEL A set of VISTA software routines that function as an intermediary between
the host operating system and the VISTA application packages (e.g.,
Laboratory, Pharmacy, IFCAP, etc.). Kernel provides a standard and
consistent user and programmer interface between application packages
and the underlying M implementation. (VA FileMan and MailMan are
self-contained to the extent that they can standalone as verified packages.)
Some of Kernel's components are listed below along with their associated
namespace assignments:

KIDS XPD
Menu Management XQ
Tools XT
Sign-on/Security XU
Device Handling ZIS
Task Management ZTM

MENU MANAGER The Kernel module that controls the presentation of user activities such as
menu choices or options. Information about each user’s menu choices is
stored in the Compiled Menu System, the ^XUTL global, for easy and
efficient access.

MULTIPLE A multiple-valued field; a subfile. In many respects, a multiple is
structured like a file.

MUMPS (ANSI
STANDARD)

A programming language recognized by the American National Standards
Institute (ANSI). The acronym MUMPS stands for Massachusetts General
Hospital Utility Multi-programming System and is abbreviated as M.

Glossary

Glossary-4 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

NAMESPACING A convention for naming VISTA package elements. The Database
Administrator (DBA) assigns unique character strings for package
developers to use in naming routines, options, and other package elements
so that packages may coexist. The DBA also assigns a separate range of
file numbers to each package.

NODE In a tree structure, a point at which subordinate items of data originate. An
M array element is characterized by a name and a unique subscript. Thus
the terms: node, array element, and subscripted variable are synonymous.
In a global array, each node might have specific fields or "pieces" reserved
for data attributes such as name.

OPTION As an item on a menu, an option provides an opportunity for users to
select it, thereby invoking the associated computing activity. In VISTA, an
entry in the OPTION file (#19). Options may also be scheduled to run in
the background, non-interactively, by TaskMan.

PROMPT The computer interacts with the user by issuing questions called prompts,
to which the user returns a response.

REMOTE PROCEDURE
CALL

A remote procedure call (RPC) is essentially M code that may take
optional parameters to do some work and then return either a single value
or an array back to the client application.

ROUTINE A program or a sequence of instructions called by a program that may
have some general or frequent use. M routines are groups of program lines
that are saved, loaded, and called as a single unit via a specific name.

SECURITY KEY The purpose of Security Keys is to set a layer of protection on the range of
computing capabilities available with a particular software package. The
availability of options is based on the level of system access granted to
each user.

SERVER The computer where the data and the Business Rules reside. It makes
resources available to client workstations on the network. In VISTA, it is
an entry in the OPTION file (#19). An automated mail protocol that is
activated by sending a message to a server at another location with the
"S.server" syntax. A server's activity is specified in the OPTION file (#19)
and can be the running of a routine or the placement of data into a file.

SIGN-ON/SECURITY The Kernel module that regulates access to the menu system. It performs a
number of checks to determine whether access can be permitted at a
particular time. A log of signons is maintained.

SUBSCRIPT A symbol that is associated with the name of a set to identify a particular
subset or element. In M, a numeric or string value that: is enclosed in
parentheses, is appended to the name of a local or global variable, and
identifies a specific node within an array.

 Glossary

Revised: May 2002 RPC Broker Getting Started with the BDK Glossary-5
 Version 1.1

UCI User Class Identification, a computing area. The MGR UCI is typically
the Manager's account, while VAH or ROU may be Production accounts.

USER ACCESS This term is used to refer to a limited level of access to a computer system
that is sufficient for using/operating a package, but does not allow
programming, modification to data dictionaries, or other operations that
require programmer access. Any of VISTA's options can be locked with a
security key (e.g., XUPROGMODE, which means that invoking that
option requires programmer access).

The user's access level determines the degree of computer use and the
types of computer programs available. The Systems Manager assigns the
user an access level.

USER INTERFACE The way the package is presented to the user, such as Graphical User
Interfaces that display option prompts, help messages, and menu choices.
A standard user interface can be achieved by using Borland's Delphi
Graphical User Interface to display the various menu option choices,
commands, etc.

VERIFY CODE The Kernel's Sign-on/Security system uses the Verify code to validate the
user's identity. This is an additional security precaution used in
conjunction with the Access code. Verify codes shall be at least eight
characters in length and contain three of the following four kinds of
characters: letters (lower- and uppercase), numbers, and, characters that
are neither letters nor numbers (e.g., "#", "@" or "$"). If entered
incorrectly, the system does not allow the user to access the computer. To
protect the user, both codes are invisible on the terminal screen.

VISTA Veterans Health Information Systems and Technology Architecture.
VISTA includes the VA's application software (i.e., Microsoft Windows-
based and locally-developed applications, roll-and-scroll, and interfaces
such as software links to commercial packages). In addition, it
encompasses the VA's uses of new automated technology including the
clinical workstations. VISTA encompasses the rich automated environment
already present at local VA medical facilities.

WINDOW An object on the screen (dialog) that presents information such as a
document or message.

Glossary

Glossary-6 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Revised: May 2002 RPC Broker Getting Started with the BDK Appendix A-1
 Version 1.1

Appendix A—Patch Revision History

The following table displays the patch/version release history for the RPC Broker software. The sequence
number (Seq #) is the order in which the patch was released by National VISTA Support (NVS) and
installed by the site. The sequence number does not necessarily match the Patch ID number in all cases.
Also, the sequence number, in some cases, can imply dependency between patches. Each table entry
indicates that the documentation was reviewed and updated as needed for each patch; in some cases, a
patch may not affect the content of the documentation. Regardless, the patch will still be added to the
patch history in reverse patch sequence order.

Seq # Patch ID Brief Summary Status

24 XWB*1.1*29 This patch provides an installation executable for
advanced RPCBroker features that must be installed,
or at least registered, on the client workstations.

Client-side only
patch—05/19/02.

This document has
been reviewed and
updated as needed
for this patch.

23 XWB*1.1*26 This patch updates the Broker's Programmer Client
Workstation software—also known as the Broker
Development Kit (BDK). It supports Delphi V. 4, 5,
and 6.

It provides a SharedRPCBroker component. Any GUI
application that uses the SharedRPCBroker will now
have the ability to share a Broker connection. This
patch also supports ESSO.

Client-side only
patch—05/19/02.

This document has
been reviewed and
updated as needed
for this patch.

22 XWB*1.1*13 This patch updates the Broker's Programmer Client
Workstation software—also known as the Broker
Development Kit (BDK). It supports Delphi V. 4, 5,
and 6.

It provides Silent Login functionality in the Broker.
Any GUI RPC Broker-based application will now
have the ability to login to an M Server silently (i.e.
without any user dialog). This patch also supports
Enterprise Single-Sign-On (ESSO).

Client and server
patch—05/19/02.

This document has
been reviewed and
updated as needed
for this patch.

21 XWB*1.1*25 This patch adds a new protected field named
SUPPRESS RDV USER SETUP (#.1) to the
REMOTE PROCEDURE file (#8994). It regulates the
addition of Remote Users to sites' local NEW
PERSON files for the RDV-based RPCs.

Server-side only
patch—Patch
released on
05/09/02.

20 XWB*1.1*27 This patch enables asynchronous processing,
multiple jobs running at the same time. Prior to this
patch, processing of requests to the HL7 package for
remote data made by GCPR and CPRS, was
performed synchronously - in order of time of
request, each job finishing before the next job
started.

Server-side only
patch—Patch
released on
03/15/02.

Appendix A—Patch Revision History

Appendix A-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Seq # Patch ID Brief Summary Status

19 XWB*1.1*16 This patch provides several bug fixes (e.g.,
READ/WRITE errors) initiated via NOIS.

Server-side only
patch—Patch
released on
02/06/02.

18 XWB*1.1*24 This patch updates the Broker's Programmer Client
Workstation software—also known as the Broker
Development Kit (BDK). It supports only Delphi V. 4
and Delphi V. 5.

Due to version-dependent code, a problem was
recently encountered that is associated with reading
the Microsoft Windows Registry in programs
compiled with Delphi V. 5. Because a conditional test
was specifically looking for Delphi V. 4-based
applications, Delphi V. 5-based applications ended
up using Broker code for Delphi V. 3. This can result
in users having limited privileges, preventing their
ability to read data from the registry. This has been
observed when a user with limited NT privileges
attempts to select a location for the RPC Broker
connection, and it results in the use of the default
BrokerServer/9200. However, users with higher
levels of NT access do not see this problem. This
version-dependent code was removed via this patch.

Client and server
patch—Patch
released on
11/09/01.

This document was
reviewed and
updated as needed
for this patch.

17 XWB*1.1*22 The calling site had a NEW PERSON file entry with a
phone number containing a trailing backslash ("\").
As part of Remote Data Views (RDV), this data was
then encoded and sent to the remote site.

At the remote site, a bug caused the backslash ("\")
to be appended to the end of several other strings,
which then caused the reported error. This was fixed
by correcting the decoding routine.

Because the error occurred before RDV was setup to
handle an error, it caused the calling site to keep
sending the same message repeatedly. This has
been fixed by setting an error trap at the beginning of
RDV.

If the application does not set some data into the
return variable, XWB2HL7 will return a string starting
with "-1^".

The XWB EXAMPLE option, RPC's and routine
(XWBEXMPL) are included to add an entry point for
testing that will record the symbol table in the error
trap.

Server-side only
patch—Patch
released on
10/03/01.

This document was
reviewed and
updated as needed
for this patch.

 Appendix A—Patch Revision History

Revised: May 2002 RPC Broker Getting Started with the BDK Appendix A-3
 Version 1.1

Seq # Patch ID Brief Summary Status

16 XWB*1.1*20 This patch addresses the following:

• During the early testing of RDV (Remote
Data View), the DUZ value was hard set to
.5 just before the call to the RPC. This was
done because the code to set up the user at
the remote site wasn't ready. When the code
was fixed to properly set the DUZ, the old
code was never removed. This has been
fixed in the routine XWB2HL7.

• If data was left in the
^XUTL("XQ",$J,"IO")node it could cause
problems when HOME^%ZIS is called by
some RPC's, so this ^XUTL node is killed off
before the RPC is called.

• In an e-mail message from CPRS
developers: The global that may be used to
pass data back to the RPC was not killed
before its use. This was fixed in the routine
XWBDRPC.

Server-side only
patch—Patch
released on
05/10/01.

This document was
reviewed and
updated as needed
for this patch.

15 XWB*1.1*14 This patch updates the Broker's Programmer Client
Workstation software—also known as the Broker
Development Kit (BDK). It adds no new functionality .
It does the following:

• Releases the source code for the BDK.

• Splits the VistaBroker package into separate
design- and run-time packages.

Client and server
patch—Patch
released on
10/17/00.

This document was
reviewed and
updated as needed
for this patch.

14 XWB*1.1*18 This patch fixed the following NOIS: LOM-0800-
62301 and PRO-0800-11778:

If there are problems associated with the remote
site's HL7 definitions—specifically the receiving
application. Then the RPC XWB REMOTE STATUS
CHECK will get an UNDEF error on the variable Z.

Server-side only
patch—Patch
released on
10/17/00.

This document was
reviewed and
updated as needed
for this patch.

13 XWB*1.1*12 This patch is in support of the CPRS Remote Data
Views project. The RPC Broker is used to facilitate
invocation of Remote Procedure calls on a remote
server. The RPC Broker uses VISTA HL7 as the
vehicle to pass RPC name and parameters from a
local server to a remote server. On the return path,
VISTA HL7 is also used to send results from the
remote server back to the local server.

Server-side only
patch—Patch
released on
08/04/00.

This document was
reviewed and
updated as needed
for this patch.

Appendix A—Patch Revision History

Appendix A-4 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Seq # Patch ID Brief Summary Status

12 XWB*1.1*10 This patch gives greater information about and
control of RPCs. Specific new abilities are:

• Blocking an RPC either locally*, remotely*,
or in both contexts by setting a value in the
INACTIVE field of the Remote Procedure
file. Prior to this patch, values in this field
had no effect.

• Assuring that an RPC is at least a specified
version when it is run remotely* by setting a
value in the new VERSION field of the
REMOTE PROCEDURE file.

• Querying a server regarding the status of
RPCs by using new Remote Procedures:
XWB IS RPC AVAILABLE and XWB ARE
RPCS AVAILABLE.

• In addition, this patch stops M errors from
occurring when a client application attempts
to:

1.) Create a context that does not exist on
the server, or

2.) Run a remote procedure that does not
exist on the server.

Server-side only
patch—Patch
released on
08/04/00.

This document was
reviewed and
updated as needed
for this patch.

11 XWB*1.1*15 This patch should correct a problem on Cache sites
with the Broker looping with COMMAND errors. This
error is caused when the Broker tries to open the
TCP port and the port is already open via the Broker.

Server-side only
patch—Patch
released on
04/12/00.

This document was
reviewed and
updated as needed
for this patch.

10 XWB*1.1*11 This patch updates the Broker's Programmer Client
Workstation software—also known as the Broker
Development Kit (BDK)—adding support for Delphi
V. 5 development.

Client and server
patch—Patch
released on
01/24/00.

This document was
reviewed and
updated as needed
for this patch.

 Appendix A—Patch Revision History

Revised: May 2002 RPC Broker Getting Started with the BDK Appendix A-5
 Version 1.1

Seq # Patch ID Brief Summary Status

9 XWB*1.1*9 This patch fixes the following:

• Intersystems License. This is the patch that
works with Patch XU*8*118. The code to
share licenses when GUI and Telnet users
from the same workstation are connected is
in place and ZU now calls it. This patch adds
a similar call from XWBTCPC.

• This patch brings a new XWB LISTENER
STOP ALL option for shutting down multiple
listeners. It also brings a modified option
XWB LISTENER STARTER for starting
Broker listeners.

Server-side only
patch—Patch
released on
01/24/00.

This document was
reviewed and
updated as needed
for this patch.

8 XWB*1.1*8 This patch supports GUI Multi-Divisional signon. If a
user has more than one division to choose from, the
user must select one before continuing with the
signon. If the user has only one division in File #200,
this division will be used; otherwise, the default
institution in the KERNEL SYSTEM PARAMETERS
file will be used.

Client-side only
patch—Patch
released on
12/10/99.

This document was
reviewed and
updated as needed
for this patch.

7 XWB*1.1*6 This patch does the following:

• Eliminates server Broker jobs for which there
is no client application.

• Changes the time that the server waits for
the client to contact it. A new field in the
KERNEL SYSTEM PARAMETERS file,
BROKER ACTIVITY TIMEOUT (default
value of approximately 3 minutes) controls
the length of the timeout.

Client and server
patch—Patch
released on
09/09/99.

This document was
reviewed and
updated as needed
for this patch.

6 XWB*1.1*4 This patch does the following:

1. Introduces a shorter timeout when logging in
via any GUI RPC Broker-based application.
The server listener process will timeout after
90 seconds if the user has not passed in
his/her Access and Verify codes.

2. Updates the Broker's Programmer Client
Workstation software—also known as the
Broker Development Kit (BDK)—adding
support for Delphi V. 4 development.

3. Fixes a bug in which the Title bar of the
Kernel Login form was being changed when
a user started entering their Access code.

Client and server
patch—Patch
released on
06/24/99.

This document was
reviewed and
updated as needed
for this patch.

Appendix A—Patch Revision History

Appendix A-6 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Seq # Patch ID Brief Summary Status

5 XWB*1.1*7 This patch addresses two problems:

1. A command error is occurring at
RESTART+17^XWBTCPL when the Broker
tries to reopen a device that is not closed.
This seems to be a problem with Cache sites
only. The result of this error causes the
Broker Listener to stop. The fix is in
XWBTCPL.

2. The listener doesn't check for available slots
before starting a new process. The listener
will now check the MAX SIGNON ALLOWED
field of the VOLUME SET multiple in the
KERNEL SYSTEM PARAMETERS file, the
same one used by Kernel logon. This fix is
also in XWBTCPL.

Server-side only
patch—Patch
released on
06/04/99.

This document was
reviewed and
updated as needed
for this patch.

4 XWB*1.1*5 This patch is for the support of RUM. This will allow
the trapping of data for Remote Procedure Calls
(RPCs) and the RPC Broker handler.

Server-side only
patch—Patch
released on
03/31/99.

This document was
reviewed and
updated as needed
for this patch.

3 XWB*1.1*3 Under CPRS, when the DG routines call OP^XQCHK
to record what option is used, it was getting back
"unknown." The Broker created context needed to
set the variable XQY.

Server-side only
patch—Patch
released on
01/06/99.

This document was
reviewed and
updated as needed
for this patch.

2 XWB*1.1*2 This patch addresses three problems with RPC
Broker v1.1:

• Encrypted Literal—Pattern match failure in
RPCs. The failure only occurs with RPCs
that combine multiple literals and an array
(NOIS WAS-0398-22800).

• Data Collection Switch turned "Off"—
Collection of data will be controlled by the
use of the Capacity Management tools
(NOIS BRX-0498-11768 and HUN-0498-
21137).

• 10 Second Network Timeout in Client
Agent—A 30 second timeout is being
switched to 10 for network communications
with the Client Agent.

Server-side only
patch—Patch
released on
07/27/98.

This document was
reviewed and
updated as needed
for this patch.

 Appendix A—Patch Revision History

Revised: May 2002 RPC Broker Getting Started with the BDK Appendix A-7
 Version 1.1

Seq # Patch ID Brief Summary Status

1 XWB*1.1*1 This patch fixes some small problems that were
discovered after release (server-side only).

• XWBTCPL—Remove the SYMBOL_TABLE
from the VAX DSM JOB command.

• XWBTCP—When stopping the Broker, see a
failure to open a socket.

• XWB BROKER EXAMPLE option—This
option was missing its type field.

Server-side only
patch—Patch
released on
02/18/98.

This document was
reviewed and
updated as needed
for this patch.

NA Version 1.1 Original Version 1.1 software release. September 1997

Table 10: RPC Broker V. 1.1 patch revision history (in reverse sequence order)

Appendix A—Patch Revision History

Appendix A-8 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Revised: May 2002 RPC Broker Getting Started with the BDK Index-1
 Version 1.1

Index

A

About this Version of the BDK, 1-1
Appendix A—Patch Revision History, 1
Assumptions About the Reader, xi

B

Backward Compatibility Issues, 1-1
BAPI32.DLL, 8-1
BROKER.HLP, 9-1
BROKER^XWBLIB, 4-4
BrokerExample, 3-8
BrokerProgPref.EXE, 6-1
Bypassing Security for Development, 3-7

C

Call method, 3-6
Call Method, 2-3
Calls

Discrete, 3-5
Silent, 3-5

Commonly Used Terms, x
Compatibility Issues, 1-1
Connect To, 4-1
Connection

Testing Your RPC Broker Connection, 5-2
Contents, v
Context -sensitive Help, Delphi V. 6.0, 7-1
Context-sensitive Help, 9-1
COTS Development and the DLL, 8-2
Create Your Own RPCs, 3-1
CreateContext method, 3-7, 4-3
CreateContext Method, 2-3

D

Data Dictionary
Data Dictionary Utilities Menu, xi
Listings, xi

Debugging, 5-1–5-2
Debugging and Troubleshooting, 5-1
DECRYP^XUSRB1, 4-4
Decrypt Method, 4-4
Delphi

3.0 Packages, 7-3
4.0 Packages, 7-2

5.0 Packages, 7-2
6.0 Packages, 7-1

Delphi and RPC Broker, 7-1
Developer Utilities, 6-1
Developer's Guide, Online, 9-1
Diagnostic Program, 5-2
Discrete Calls, 3-5
DLL Interface, 8-1
Documentation History, iii
Documentation Symbols, ix
DPL, 7-3
Dynamic Link Library (DLL), 8-1–8-2

E

EN^XWBTCP, 5-1
ENCRYP^XUSRB1, 4-4
Encrypt Method, 4-4
Encryption/Decryption Functions, 4-4
Error Message Handling, 5-1
Execute an RPC from a Client Application, How

to, 3-6
Exported Functions, 8-1

F

Figures, vii
First Input Parameter (Required), 3-2
For More Information, 9-1

G

GetServerInfo Method, 2-2, 2-4, 4-1

H

Header Files, 8-1
Help

At Prompts, x
Online, x

Help in Dlphi V. 6.0, 7-1
Home Pages

Adobe Acrobat Quick Guide Web Address, xii
Adobe Systems Incorporated Web Address,

xii
RPC Broker Home Page Web Address, 9-2
RPC Broker Web Address, xii
SD&D Home Page Web Address, xi

How to

Index

Index-2 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

Connect to an M Server, 2-4
Debug Your Client Application, 5-1
Execute an RPC from a Client Application, 3-

6
Generate Technical Information Online, x
Register an RPC, 3-7

How To
Use this Manual, ix

I
Identifying

Handler Process on the Server, 5-2
Listener Process on the Server, 5-2

Information, 9-1
Input Parameter Types (Optional), 3-4
Introduction, 1-1
Issues

Backward Compatibility, 1-1

L

List File Attributes Option, xi
lstCall Method, 2-3

M

M Emulation Functions, 4-3
Menus

Data Dictionary Utilities, xi
Message Handling, Errors, 5-1
Methods and Properties

TRPCBroker Component, 2-1
MFUNSTR.PAS, 4-3
Microsoft Windows Registry, 2-4, 4-1

O

Online
Documentation, x
Help Frames, xi
Technical Information, How to Generate, x

Online Code Samples (RPCs), 3-8
OPTION file (#19), 3-7
Options

List File Attributes, xi
Orientation, ix
Other RPC Broker APIs, 4-1
Other RPC Broker Resources, 9-2

P

Patch History, 1
Piece Function, 4-3

Programmer Settings, 6-1
Properties and Methods

TRPCBroker Component, 2-1

Q

Question Mark Help, x

R

Reader, Assumptions About the, xi
Reference Materials, xii
Registering RPCs, 3-7
Registry, 2-4, 4-1
Relationship Between an M Entry Point and an

RPC, 3-1
Remote Procedure Calls (RPCs), 3-1–3-8

Bypassing Security, 3-7
Executing, 3-6
M Entry Points, 3-2–3-4
Online Code Samples, 3-8
Registering, 3-7
RPC Entry, 3-5

REMOTE PROCEDURE File, 3-1, 3-5, 8-2
Return Value Types, 3-2
Return Values from RPCs, 8-2
Revision History

Documentation, iii
Patches, 1

RPC Broker and Delphi, 7-1
RPC Entry in the Remote Procedure File, 3-5
RPC Error Trapping, 5-1
RPC M Entry Point Examples, 3-4
RPC Security

How to Register an RPC, 3-7
RPCTEST.EXE, 5-2
RTRNFMT^XWBLIB, 4-5

S

Sample DLL Application, 8-1
Silent Calls, 3-5
Splash Screen, 4-2
SplashClose Method, 4-2
SplashOpen Method, 4-2
SplVista.PAS Unit, 4-2
Standard Edition, 7-1, 7-2
strCall Method, 2-3
Symbols Found in the Documentation, ix
Syntax of GetServerInfo Function, 4-1

 Index

Revised: May 2002 RPC Broker Getting Started with the BDK Index-3
 Version 1.1

T

Terms, Commonly Used, x
Testing Your RPC Broker Connection, 5-2
Translate Function, 4-4
Trapping RPC Errors, 5-1
Troubleshooting, 5-1–5-2
Troubleshooting and Debugging, 5-1
Troubleshooting Connections, 5-2
TRPCBroker component

CreateContext method, 3-7
Key Properties, 2-2

TRPCBroker Component, 2-1–2-4
Call method, 3-6
Call Method, 2-3
Connecting to an M Server, 2-4
CreateContext Method, 2-3, 4-3
lstCall Method, 2-3
Methods, 2-3
Properties and Methods, 2-1
strCall Method, 2-3

U

URLs
Adobe Acrobat Quick Guide Web Address, xii
Adobe Systems Incorporated Web Address,

xii
RPC Broker Home Page Web Address, 9-2
RPC Broker Web Address, xii
SD&D Home Page Web Address, xi

Use this Manual, How to, ix
Utilities, 6-1

V

VBEGCHO, 8-1
Version

About this Version of the BDK, 1-1
Vista Splash Screen, 4-2
VistaBroker.DPL, 7-3
Visual Basic, 8-1

W

Web Pages
Adobe Acrobat Quick Guide Web Address, xii
Adobe Systems Incorporated Web Address,

xii
RPC Broker Home Page Web Address, 9-2
RPC Broker Web Address, xii
SD&D Home Page Web Address, xi

Web Site
RPC Broker Home Page, 9-2

What is a Remote Procedure Call?, 3-1
What Makes a Good Remote Procedure Call?, 3-

5
Windows Registry, 2-4, 4-1
Writing M Entry Points for RPCs, 3-2

X

XUPROGMODE Security Key, 3-7
XWB GET VARIABLE VALUE RPC, 4-3
XWB_Rxx.BPL File, 7-1, 7-2
XWBLIB

$$BROKER^XWBLIB, 4-4
$$RTRNFMT^XWBLIB, 4-5

Index

Index-4 RPC Broker Getting Started with the BDK Revised: May 2002
 Version 1.1

	Cover Page
	Document Revision History
	Contents
	Figures
	Orientation
	How to Use this Manual
	Commonly Used Terms
	How to Obtain Technical Information Online
	Assumptions About the Reader
	Reference Materials

	Introduction
	TRPCBroker Component for Delphi
	TRPCBroker Component Properties and Methods
	TRPCBroker Key Properties
	TRPCBroker Key Methods
	How to Connect to an M Server

	Remote Procedure Calls (RPCs)
	What is a Remote Procedure Call?
	Create Your Own RPCs
	Writing M Entry Points for RPCs
	RPC Entry in the REMOTE PROCEDURE File
	What Makes a Good Remote Procedure Call?
	How to Execute an RPC from a Client Application
	RPC Security: How to Register an RPC

	Other RPC Broker APIs
	GetServerInfo Function
	VISTA Splash Screen Procedures
	XWB GET VARIABLE VALUE RPC
	M Emulation Functions
	Encryption Functions
	$$BROKER^XWBLIB
	$$RTRNFMT^XWBLIB

	Debugging and Troubleshooting
	How to Debug Your Client Application
	Troubleshooting Connections

	RPC Broker Developer Utilities
	Programmer Settings

	RPC Broker and Delphi
	Delphi 6.0 Packages
	Delphi V. 6 Standard Edition Not Recommended for BDK Development
	XWB_Rxx.BPL File

	Delphi 5.0 Packages
	Delphi V. 5 Standard Edition Not Recommended for BDK Development
	XWB_Rxx.BPL File

	Delphi 4.0 Packages
	XWB_Rxx.BPL File

	Delphi 3.0 Packages
	VistaBroker.DPL
	Distributing the Delphi VCL30.DPL

	RPC Broker Dynamic Link Library (DLL)
	DLL Interface
	Exported Functions
	Header Files Provided
	Sample DLL Application
	Return Values from RPCs
	COTS Development and the DLL

	For More Information
	RPC Broker Developer's Guide—BROKER.HLP
	Other RPC Broker Resources

	Glossary
	Appendix A—Patch Revision History
	Index

